mecânica generalizada Graceli - quântica química relativista em interações de forças fundamentais.
Glúon + Fóton + Bósons W e Z + gráviton /
/ G = F[x] / // [Vrt] / [ / ] /c dx=
CONDENSADO QUÂNTICO DE GRACELI COM ONDAS E POTENCIAL QUÍMICO.
- / G = F[x] / // [Vrt] / [ / ] /c dx=
onde:
é a temperatura crítica, a densidade da partícula, a massa por bóson, a constante de Planck, a constante de Boltzmann, e a função zeta de Riemann; ≈ 2,6124.
onde:
é a temperatura crítica, a densidade da partícula, a massa por bóson, a constante de Planck, a constante de Boltzmann, e a função zeta de Riemann; ≈ 2,6124. O abrandamento de átomos por meio de arrefecimento produz um estado quântico único conhecido como condensado de Bose ou condensado de Bose-Einstein. Este fenômeno foi teorizado nos anos 20 por Albert Einstein, ao generalizar o trabalho de Satyendra Nath Bose sobre a mecânica estatística dos Fótons (sem massa) para átomos (com massa). (O manuscrito de Einstein, que se pensava estar perdido, foi encontrado em 2005 numa biblioteca da Universidade de Leiden). O resultado do trabalho de Bose e Einstein é o conceito de gás de Bose, governado pela estatística de Bose-Einstein que descreve a distribuição estatística de partículas idênticas de spin inteiro, conhecidas hoje em dia como Bósons. As partículas bosónicas, que incluem o Fóton e átomos como o He-4, podem partilhar estados quânticos umas com as outras. Einstein especulou que arrefecendo os átomos bosónicos até temperaturas muito baixas os faria colapsar (ou "condensar") para o mais baixo estado quântico acessível, resultando numa nova forma de matéria.
Esta transição ocorre abaixo de uma temperatura crítica, a qual, para um gás tridimensional uniforme consistindo em partículas não-interactivas e sem graus internos de liberdade aparentes, é dada por:
onde:
é a temperatura crítica, a densidade da partícula, a massa por bóson, a constante de Planck, a constante de Boltzmann, e a função zeta de Riemann; ≈ 2,6124. - EFEITO FOTOELÉTRICO QUÃNTICO QUÍMICO GRACELI.
- / G = F[x] / // [Vrt] / [ / ] /c dx=
Analisando o efeito fotoelétrico quantitativamente usando o método de Einstein, as seguintes equações equivalentes são usadas:
Energia do fóton = Energia necessária para remover um elétron + Energia cinética do elétron emitido
Mais detalhes em: Energia do fótonAlgebricamente:
Onde:
- h é a constante de Planck,
- f é a frequência do foton incidente,
- é a função trabalho, ou energia mínima exigida para remover um elétron de sua ligação atômica,
- é a energia cinética máxima dos elétrons expelidos,
- f0 é a frequência mínima para o efeito fotoelétrico ocorrer,
- m é a massa de repouso do elétron expelido, e
- vm é a velocidade dos elétrons expelidos.
Notas:
- Se a energia do fóton (hf) não é maior que a função trabalho (), nenhum elétron será emitido. A função trabalho é ocasionalmente designada por .
- Em física do estado sólido costuma-se usar a energia de Fermi e não a energia de nível de vácuo como referencial nesta equação, o que faz com que a mesma adquira uma forma um pouco diferente.
- Note-se ainda que ao aumentar a intensidade da radiação incidente não vai causar uma maior energia cinética dos elétrons (ou electrões) ejectados, mas sim um maior número de partículas deste tipo removidas por unidade de tempo.
Analisando o efeito fotoelétrico quantitativamente usando o método de Einstein, as seguintes equações equivalentes são usadas:
Energia do fóton = Energia necessária para remover um elétron + Energia cinética do elétron emitido
Mais detalhes em: Energia do fótonAlgebricamente:
Onde:
- h é a constante de Planck,
- f é a frequência do foton incidente,
- é a função trabalho, ou energia mínima exigida para remover um elétron de sua ligação atômica,
- é a energia cinética máxima dos elétrons expelidos,
- f0 é a frequência mínima para o efeito fotoelétrico ocorrer,
- m é a massa de repouso do elétron expelido, e
- vm é a velocidade dos elétrons expelidos.
Notas:
- Se a energia do fóton (hf) não é maior que a função trabalho (), nenhum elétron será emitido. A função trabalho é ocasionalmente designada por .
- Em física do estado sólido costuma-se usar a energia de Fermi e não a energia de nível de vácuo como referencial nesta equação, o que faz com que a mesma adquira uma forma um pouco diferente.
- Note-se ainda que ao aumentar a intensidade da radiação incidente não vai causar uma maior energia cinética dos elétrons (ou electrões) ejectados, mas sim um maior número de partículas deste tipo removidas por unidade de tempo.
Comentários
Postar um comentário